Expression of hepatocyte growth factor-like protein is repressed by retinoic acid and enhanced by cyclic adenosine 3',5'-monophosphate response element-binding protein (CREB)-binding protein (CBP).
نویسندگان
چکیده
In an effort to understand the molecular mechanisms involved in the regulation of expression of the gene encoding hepatocyte growth factor-like protein (HGFL), it was found that all-trans-retinoic acid dramatically represses expression of the endogenous HGFL gene in HepG2 cells, a human hepatocyte-derived cell line. This repression requires the sequence between nucleotides -135 and -105 in the 5'-flanking sequence of the HGFL gene, a site that has previously been shown to bind the transcription factor hepatocyte nuclear factor-4 (HNF-4). Electrophoretic mobility shift analysis suggests that the retinoic acid receptor does not bind to this site, and that retinoic acid does not alter binding of HNF-4 to this DNA site. However, the transcriptional coactivator, CREB-binding protein (CBP) coactivates expression of this gene through an indirect interaction with the HNF-4-binding site, and overexpression of CBP in HepG2 cells eliminates retinoic acid repression of reporter gene expression driven by the HGFL promoter. Overexpression of CBP also protects the endogenous HGFL gene from down-regulation by retinoic acid. These results suggest that HGFL gene expression requires CBP, and competition for limiting amounts of CBP by retinoic acid receptor may be a means of modifying the activity of HNF-4 at the HGFL gene promoter.
منابع مشابه
Synergistic activation of the inhibin alpha-promoter by steroidogenic factor-1 and cyclic adenosine 3',5'-monophosphate.
The inhibin alpha-subunit gene is expressed in the ovary, testis, adrenal, and pituitary. Because this pattern of expression corresponds to that of the orphan nuclear receptor, steroidogenic factor-1 (SF-1), we hypothesized that the inhibin alpha promoter might be regulated by SF-1. Expression of exogenous SF-1, in an SF-1 deficient cell line, caused modest stimulation of the inhibin alpha prom...
متن کاملInducible binding of cyclic adenosine 3',5'-monophosphate (cAMP)-responsive element binding protein (CREB) to a cAMP-responsive promoter in vivo.
In general, DNA-binding factors that activate gene transcription are thought to do so via reversible interaction with DNA. However, most studies, largely performed in vitro, suggest that the transcriptional activator, cAMP response element-binding protein (CREB), is exceptional in that it is constitutively bound to the promoter, where its phosphorylation leads to the recruitment of CREB-binding...
متن کاملTranscriptional regulation of basal cyclooxygenase-2 expression in murine lung tumor-derived cell lines by CCAAT/enhancer-binding protein and activating transcription factor/cAMP response element-binding protein.
Cyclooxygenase-2 (COX-2) is frequently expressed in cancer cells, contributing to tumor development. Most studies of COX-2 expression have examined artificially induced expression in noncancer cells rather than basal expression in cancer cells. Therefore, basal COX-2 expression and its regulation were examined in cell lines derived from a murine model of lung adenocarcinoma. The presence of COX...
متن کاملA novel mechanism for cyclic adenosine 3',5'-monophosphate regulation of gene expression by CREB-binding protein.
The pituitary-specific transcription factor, Pit-1, is necessary to mediate protein kinase A (PKA) regulation of the GH, PRL, and TSH-beta subunit genes in the pituitary. Since these target genes lack classical cAMP DNA response elements (CREs), the mechanism of this regulation was previously unknown. We show that CREB binding protein (CBP), through two cysteine-histidine rich domains (C/H1 and...
متن کاملCalmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein.
Activating transcription factor 1 (ATF1) and the cAMP response element-binding protein (CREB) are members of the CREB/ATF family implicated in cAMP- and calcium-induced transcriptional activation. Although ATF1 and CREB share extensive homology, the function of ATF1 is poorly understood. Its phosphorylation state and activation by Ca2+- and calmodulin-dependent protein kinase (CaMK) II were the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 140 1 شماره
صفحات -
تاریخ انتشار 1999